
Split‐Level I/O Scheduler
Suli Yang, Tyler Harter, Anand Krishnamurphy, Salini Kowsalya, Samer Al‐Kiswany, Andrea C.

Aarpaci‐Dusseau, Remzi H. Arparci‐Dusseau

Why Not Block‐level Scheduler? Why don’t they work?

Journal: An Example of FS Being A Pain…Other Problematic File System
Features (for ext4 and others…)

 Almost all file systems use ordering requirements to
ensure crash consistency.

 Write delegation everywhere: delaying work makes it
necessary.

 Write delegation and ordering requirements are
universal file system properties.

 Make block level write scheduling inherently hard (if
not impossible).

Because they don’t work!
(At least for writes…)

0
5

10
15
20
25
30
35
40
45
50

1 2 3 4 5 6 7 8

M
B

/s
e

c
o

n
d

Priority

Read Throughput

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8
M

B
/s

e
c

o
n

d

Priority

Async Write Throughput

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 2 3 4 5 6 7 8

M
B

/s
e

c
o

n
d

Priority

Direct Write Throughput

Schedulers has no knowledge of or control over file
system.

FS write delegation prevents correct
accounting.

FS ordering requirements
prevents request reordering.

Specify
Resource allocation

scheme

Reorder
Request to realize

scheme

Account
Resource usage

FS: Maybe
mine?

Disk

transaction

Low prio
data

High prio
data

It doesn’t matter which data block the scheduler writes
to disk first. Priority inversion happens because high‐prio
fsync depends on low‐prio data hits disk.

High priority fsync()
won’t return until
both transaction
and data hit disk.

Accounting Ordering

Journaling bad bad

Shared Metadata bad bad

Write Buffering bad neutral

Delayed Allocation bad good

System Call Scheduling Comes to
The Rescue?

FS

Write()

Block
Read Write

Queues

Client ClientClient

Read()

Cache

Read()Read()Read()
Write()Write()Write()

VFS

Split‐Level I/O Scheduler!

FS
Write()

Read
Write

Queues

Client ClientClient

Read()

Cache

Read()Read()

Read()

Write()Write()

Write()

VFS

Write()
Fsync()Fsync()Fsync()Fsync()Fsync()

Queues

ReadReadRead

Block
Accounting

Simple; no file system complexities.

What if reads/writes can be absorbed by cache?

No block level info for seek time optimization.

Not all system calls has the same cost.

Schedule reads and writes low and fsyncs high.

Track I/O causes with many-to-many bipartite graph
between clients and block requests.

Low level accounting and optimization based on disk
head time for all I/O.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

1 2 3 4 5 6 7 8

M
B

/s
e

c
o

n
d

Priority

Write+Fsync Throughput

