

Why Not Block-level Scheduler?


Because they don't work!
(At least for writes...)

Why don't they work?

Schedulers has no **knowledge of or control over** file system.

FS **write delegation** prevents correct accounting

FS **ordering requirements** prevents request **reordering**.

Specify
Resource allocation scheme

Account
Resource usage

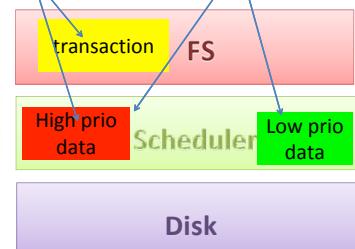
Reorder
Request to realize scheme

Other Problematic File System Features (for ext4 and others...)

	Accounting	Ordering
Journaling	bad	bad
Shared Metadata	bad	bad
Write Buffering	bad	neutral
Delayed Allocation	bad	good

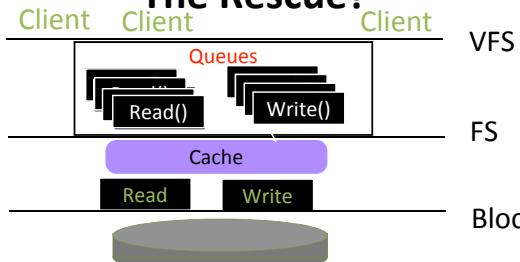
- ❑ Almost all file systems use **ordering requirements** to ensure crash consistency.
- ❑ **Write delegation** everywhere: delaying work makes it necessary.
- ❑ Write delegation and ordering requirements are **universal** file system properties.
- ❑ Make block level write scheduling **inherently hard** (if not impossible).

Journal: An Example of FS Being A Pain...


Conflict of interest!

High priority fsync() consistency imposes requirement that transaction hits disk **after all** data blocks

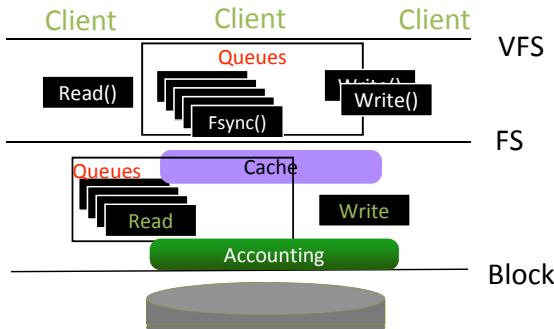
Journal has **ordering requirement** for consistency


Scheduler wants to **re-order** for fairness

Journal writes transaction on **behalf of** clients.

*It doesn't matter which data block the scheduler writes to disk first. **Priority inversion** happens because high-prio fsync depends on low-prio data hits disk.*

System Call Scheduling Comes to The Rescue?


Simple; no file system complexities.

What if reads/writes can be absorbed by cache?

No block level info for seek time optimization.

Not all system calls has the same cost.

Split-Level I/O Scheduler!

Schedule reads and writes low and fsyncs high.

Track I/O causes with many-to-many bipartite graph between clients and block requests.

Low level accounting and optimization based on disk head time for all I/O.