A Day Late and a Dollar
Short

The Case for Research on Cloud Billing Systems

Robert Jellinek Yan Zhai Thomas Ristenpart Michael Swift

Outline

Motivation: Why study cloud billing?
Our contributions

Our study

Results

Conclusions and future work

Motivation: Cloud Billing

* Many performance, reliability, and cost
efficiency studies of the cloud.

* Little attention has been paid to their billing
systems.

* Pay-as-you-go pricing model relies upon complex,
large-scale billing systems

as

TLL
< 3'3‘5%58& F} Google Cloud Platform @

ng

Motivation: Cloud Billing

* Resource accounting is an interesting challenge.

* How to track all compute resource usage in
real time,
at fine granularity
maintaining accuracy,
and not hurting performance?

L
s e'g‘sgﬁgg F} Google Cloud Platform @

Study of cloud billing
mechanisms.

* We were able to:
Disambiguate billing by reverse engineering
Uncover bugs:
Race conditions in EC2

Inconsistencies across billing interfaces in EC2
Rackspace bug causing overcharges

Detect systematic undercharging from caching/
aggregation

Characterize performance of billing latency.

Study Overview

Guiding question:

How accurate, timely, and predictable
are customer-facing billing interfaces?

Measured billing for:
compute time
storage (IOPS and capacity)
network usage

Experimented on AWS, GCE, and Rackspace

Calculate billing latency of billing interfaces.

Methodology

* Instrument providers’ API calls to launch/terminate instances and
create/delete storage volumes, in order to capture fine-grained
timing data about their usage.

* Launch an instance and execute one of several workloads (network
tests; 1/O tests; or timed idle to test instance-hour thresholds) to
measure resource usage.

* Fetch OS-based resource-usage data from procfs and Netfilter /
iptables in order to compare with the amount ultimately billed.

* Terminate instance after workload completion. In cases where we
measure instance-hour thresholds, terminate at some fixed number
of seconds after various instance-lifetime events, in order to isolate
the interval that the provider uses to calculate billing.

* Poll for billing updates over all measured resources.

Billing Interfaces

* EC2:
Web-based GUI management console

Programatically accessible CSVs:

Hourly
Monthly (to date)
Cost-allocation (allows user to tag resources and filter costs by tag)

* GCE:
Web-based GUI interface

* Rackspace:
Web-based GUI interface

Billing Interfaces

Details
Expand All Services | Collapse All Services Printer Friendly Version
AWS Service Charges $0.95
(=] Amazon Elastic Compute Cloud
- Download Usage Report » ' $0.95
US East (Northern Virginia) Region
Amazon EC2 running Linux/UNIX
$0.020 per Micro Instance (t1.micro) instance-hour (or partial hour) 33 Hrs 0.66
Amazon EC2 EBS
$0.100 per GB-month of provisioned storage (blended price)* 2.367 GB-Mo 0.24
$0.10 per 1 million I/O requests 76,834 10s 0.01
$0.125 per GB-Month of snapshot data stored (blended price)* 0.344 GB-Mo 0.04
(5] Amazon Simple Notification Service $0.00
Download Usage Report »
US East (Northern Virginia) Region
First 100,000 Amazon SNS API Requests per month are free 54 Requests 0.00
@ AWS Data Transfer (excluding Amazon CloudFront) $0.00
$0.000 per GB - data transfer in per month 0.034 GB 0.00
$0.000 per GB - first 1 GB of data transferred out per month 0.001 GB 0.00

$0.000 per GB of regional data transfer in/out (blended price)* 0.000020 GB 0.00

Billing Latency

EC2
Thr l
§ 40 -1 -
8 30 (s S .
= 20| 1 F -
Q
o,),
0 1| - ” I][Iﬂ .
5 10 15 20 25 5 10 15 20 25
Console latency (hours) CSV latency (hours)
Web Console CSv
Avg latency: 6:41 hours Avg latency: 8:15 hours

Std dev: 4:10 hours Std dev: 3 hours

GCE/Rackspace Billing Latency

Delay (days)

GCE

SN = O 00
|
|

Lower bounds on GCE billing
latency for 13 instances, in
DAYS. Error bars indicate upper
bounds.

Delay (hours)

Rackspace

Rackspace billing latency for
21 instances in HOURS, +/- 10
minutes. All billing updates
occurred between 9-10am
UTC.

EC2: Why such latency?

EC2: Staggered Launch Times

6 —e O O
5 —eo ® @
= 4 —_— @ ®
3
3
< 3 — @
Key
2 T *—o © @ & |nstance Launch
& Management Console
Billing Update
& CSV Billing Update
11 o—e ® @

18:00 21:00 00:00 03:00
Time of Day (HH:MM)

We deliberately staggered the start times of instances. The
billing update schedule suggests periodic batch processing.

What is “Compute Time”?

VMTimedShutdown_start

instance_start
(/proc/uptime=0)

final_recorded_uptime billing_update

state_terminated

instance_launch ‘

state_running
instance_shutdown

Major events in an instance lifetime

Compute Time

* Many events in an instance lifetime.

* Providers: “Pricing is per instance-hour
consumed for each instance, from the time an
instance is launched until it is terminated or
stopped.”[1]

* This is ambiguous. We tried to reverse engineer
exactly when the “start” and “stop” timestamps
occur.

[1] https://aws.amazon.com/ec2/pricing/

Compute Time

* Billing “start” and “stop” could to correspond to various
events in an instance lifetime, for example:

¢ Start:
When user launches instance.
When launch request is serviced (could be queued).
When instance boot is complete.
When /proc/uptime is zero.

* Stop:
When user initiates shutdown from within instance.
When user initiates terminate from management console.
When termination is complete (opaque to user).

Compute Time

* We determined the most probable timestamps
for each service, but there was still jitter.

* Suggests variance outside what we are able to
measure by polling the providers” API.

EC2 Compute Time Results

|

-4~ tl.micro
=+ ml.small
-4 cl.medium

—

o o o o
b 'S (@] [oe]

Frac. of instances billed 2 hours

Compute Time Anomalies

Other anomalies in EC2 compute billing

QEDCE@ O @
MK X X
2 XX X
5
Qo A
- = ¢ 3590
a ° ® m3595
) 4 3596
g x 3597
:g _ - #3599
3 o x ® 3600
< an
Lo
A1 [|
&
3550 3600 3650 3700 3750 3800
Measured Uptime (seconds)

Measured uptime Tqown — Tup for 272 EC2 in-
stances run with 3590 < Triii — Tiaunch < 3600 versus the
number of hours billed.

Compute Time

A #launched | #ran | Avg. uptime per | Hours billed
instance (S)
<16 20 0 0 0
17 20 1 115 0
18 20 1 116 0
19 20 4 117 0
20 20 6 118 3

* We created a special “fast boot” kernel that booted and
immediately sent heartbeat messages to our control server.

* Terminated instances A seconds after launch.

* Race condition causes some instances to not get billed, but
yield roughly 2 minutes of free uptime.

Storage Billing

* Provider charges based on its view of storage ops

* Storage:

In Rackspace deleting a volume before detaching from an
instance caused it to hang and accrue charges.

|/O charges in EC2 lower than /proc/diskstats would suggest;
caching or aggregation?

* Storage example:
Write(4kb); write(4kb); -> 1 storage op
Write (4kb); seek(1 million); write(4kb) -> 2 storage ops

[OPS Aggregation/Caching?

00 Reads
[0 Writes

Measured ops / billed ops

Block31ze

Ratio of number of storage operations measured
by /proc/diskstats to number of operations billed by
EC2.

Network Billing

In EC2 for Internet-outbound traffic, underbilled by 5.6% of
Netfilter measurements.

Rackspace underbilled 1 GB of Internet-outbound traffic for 2 of
11 instances by 35 MB and 125 MB.

Send Receive
Setup % Reported | % Reported
(1) Univ — EC2 - 95.9%
(2) EC2 — Univ 94.4% -
(3) Zone X — Zone X - -
(4) Zone X — Zone X 97.6% 97.2%
(public IP)
(5) Zone X — Zone Y 97.1% 97.5%
(6) Reg X - Reg Y 95.9% 96.8%

Average ratios (in percent) of billed traffic volume
to measured traffic volume for the sender (second column)
and receiver (third column). A “-” indicates tests for which
no billing occurred, which was correct relative to the EC2
billing model.

Conclusions

* Future research should investigate the tradeoffs
between performance on the one hand, and
accurate, timely, transparent resource
accounting and billing on the other.

* This will likely necessitate collaboration with
industry.
* It seems that today, it should be feasible for

providers to expose a billing API, to enable
programmatic queries of billing information.

Thank you.

