
A	
  Day	
  Late	
  and	
  a	
  Dollar	
  
Short	
  	
  
	
  The	
  Case	
  for	
  Research	
  on	
  Cloud	
  Billing	
  Systems	
  

Robert	
  Jellinek	
  	
  	
  	
  	
  	
  	
  	
  Yan	
  Zhai	
  	
  	
  	
  	
  	
  	
  	
  Thomas	
  Ristenpart	
  	
  	
  	
  	
  	
  	
  	
  Michael	
  Swi9	
  



Outline	
  
•  Mo9va9on:	
  Why	
  study	
  cloud	
  billing?	
  
•  Our	
  contribu9ons	
  
•  Our	
  study	
  
•  Results	
  
•  Conclusions	
  and	
  future	
  work	
  



Motivation:	
  Cloud	
  Billing	
  
• Many	
  performance,	
  reliability,	
  and	
  cost	
  
efficiency	
  studies	
  of	
  the	
  cloud.	
  	
  

	
  
•  LiEle	
  aEen9on	
  has	
  been	
  paid	
  to	
  their	
  billing	
  
systems.	
  	
  

•  Pay-­‐as-­‐you-­‐go	
  pricing	
  model	
  relies	
  upon	
  complex,	
  
large-­‐scale	
  billing	
  systems	
  



Motivation:	
  Cloud	
  Billing	
  
•  Resource	
  accoun9ng	
  is	
  an	
  interes9ng	
  challenge.	
  
	
  	
  
•  How	
  to	
  track	
  all	
  compute	
  resource	
  usage	
  in	
  	
  
•  real	
  >me,	
  
•  	
  at	
  fine	
  granularity	
  
•  	
  maintaining	
  accuracy,	
  
•  	
  and	
  not	
  hur9ng	
  performance?	
  



Study	
  of	
  cloud	
  billing	
  
mechanisms.	
  
• We	
  were	
  able	
  to:	
  
•  Disambiguate	
  billing	
  by	
  reverse	
  engineering	
  
•  Uncover	
  bugs:	
  
•  Race	
  condi9ons	
  in	
  EC2	
  
•  Inconsistencies	
  across	
  billing	
  interfaces	
  in	
  EC2	
  
•  Rackspace	
  bug	
  causing	
  overcharges	
  

•  Detect	
  systema>c	
  undercharging	
  from	
  caching/
aggrega9on	
  

•  Characterize	
  performance	
  of	
  billing	
  latency.	
  



Study	
  Overview	
  
•  Guiding	
  ques9on:	
  	
  
	
  

How	
  accurate,	
  >mely,	
  and	
  predictable	
  	
  
are	
  customer-­‐facing	
  billing	
  interfaces?	
  

	
  

•  Measured	
  billing	
  for:	
  
•  compute	
  >me	
  
•  storage	
  (IOPS	
  and	
  capacity)	
  
•  network	
  usage	
  
	
  

•  Experimented	
  on	
  AWS,	
  GCE,	
  and	
  Rackspace	
  
•  Calculate	
  billing	
  latency	
  of	
  billing	
  interfaces.	
  	
  



Methodology	
  
•  Instrument	
  providers’	
  API	
  calls	
  to	
  launch/terminate	
  instances	
  and	
  
create/delete	
  storage	
  volumes,	
  in	
  order	
  to	
  capture	
  fine-­‐grained	
  
9ming	
  data	
  about	
  their	
  usage.	
  

•  Launch	
  an	
  instance	
  and	
  execute	
  one	
  of	
  several	
  workloads	
  (network	
  
tests;	
  I/O	
  tests;	
  or	
  9med	
  idle	
  to	
  test	
  instance-­‐hour	
  thresholds)	
  to	
  
measure	
  resource	
  usage.	
  

•  Fetch	
  OS-­‐based	
  resource-­‐usage	
  data	
  from	
  procfs	
  and	
  Ne2ilter	
  /	
  
iptables	
  	
  in	
  order	
  to	
  compare	
  with	
  the	
  amount	
  ul9mately	
  billed.	
  

•  Terminate	
  instance	
  aVer	
  workload	
  comple9on.	
  In	
  cases	
  where	
  we	
  
measure	
  instance-­‐hour	
  thresholds,	
  terminate	
  at	
  some	
  fixed	
  number	
  
of	
  seconds	
  aVer	
  various	
  instance-­‐life9me	
  events,	
  in	
  order	
  to	
  isolate	
  
the	
  interval	
  that	
  the	
  provider	
  uses	
  to	
  calculate	
  billing.	
  

•  Poll	
  for	
  billing	
  updates	
  over	
  all	
  measured	
  resources.	
  
	
  



Billing	
  Interfaces	
  
•  EC2:	
  
•  Web-­‐based	
  GUI	
  management	
  console	
  
•  Programa9cally	
  accessible	
  CSVs:	
  

•  Hourly	
  
•  Monthly	
  (to	
  date)	
  
•  Cost-­‐alloca>on	
  (allows	
  user	
  to	
  tag	
  resources	
  and	
  filter	
  costs	
  by	
  tag)	
  

•  GCE:	
  
•  Web-­‐based	
  GUI	
  interface	
  	
  

•  Rackspace:	
  
•  Web-­‐based	
  GUI	
  interface	
  



Billing	
  Interfaces	
  



Billing	
  Latency	
  

Web	
  Console	
  
Avg	
  latency:	
  6:41	
  hours	
  	
  
Std	
  dev:	
  4:10	
  hours	
  

CSV	
  
Avg	
  latency:	
  8:15	
  hours	
  
Std	
  dev:	
  3	
  hours	
  

EC2	
  



GCE/Rackspace	
  Billing	
  Latency	
  

Lower	
  bounds	
  on	
  GCE	
  billing	
  
latency	
  for	
  13	
  instances,	
  in	
  
DAYS.	
  Error	
  bars	
  indicate	
  upper	
  
bounds.	
  

Rackspace	
  billing	
  latency	
  for	
  
21	
  instances	
  in	
  HOURS,	
  +/-­‐	
  10	
  
minutes.	
  All	
  billing	
  updates	
  
occurred	
  between	
  9-­‐10am	
  
UTC.	
  

GCE	
   Rackspace	
  



EC2:	
  Why	
  such	
  latency?	
  

We	
  deliberately	
  staggered	
  the	
  start	
  9mes	
  of	
  instances.	
  The	
  
billing	
  update	
  schedule	
  suggests	
  periodic	
  batch	
  processing.	
  

EC2:	
  Staggered	
  Launch	
  Times	
  



What	
  is	
  “Compute	
  Time”?	
  

Major	
  events	
  in	
  an	
  instance	
  life>me	
  



Compute	
  Time	
  
• Many	
  events	
  in	
  an	
  instance	
  life9me.	
  	
  
	
  

• Providers:	
  “Pricing	
  is	
  per	
  instance-­‐hour	
  
consumed	
  for	
  each	
  instance,	
  from	
  the	
  9me	
  an	
  
instance	
  is	
  launched	
  un9l	
  it	
  is	
  terminated	
  or	
  
stopped.”[1]	
  

•  This	
  is	
  ambiguous.	
  We	
  tried	
  to	
  reverse	
  engineer	
  
exactly	
  when	
  the	
  “start”	
  and	
  “stop”	
  9mestamps	
  
occur.	
  

[1]	
  hEps://aws.amazon.com/ec2/pricing/	
  



Compute	
  Time	
  
•  Billing	
  “start”	
  and	
  “stop”	
  could	
  to	
  correspond	
  to	
  various	
  
events	
  in	
  an	
  instance	
  life9me,	
  for	
  example:	
  

•  Start:	
  
•  When	
  user	
  launches	
  instance.	
  
•  When	
  launch	
  request	
  is	
  serviced	
  (could	
  be	
  queued).	
  
•  When	
  instance	
  boot	
  is	
  complete.	
  
•  When	
  /proc/up9me	
  is	
  zero.	
  

•  Stop:	
  
•  When	
  user	
  ini9ates	
  shutdown	
  from	
  within	
  instance.	
  
•  When	
  user	
  ini9ates	
  terminate	
  from	
  management	
  console.	
  
•  When	
  termina9on	
  is	
  complete	
  (opaque	
  to	
  user).	
  

	
  



Compute	
  Time	
  
• We	
  determined	
  the	
  most	
  probable	
  9mestamps	
  
for	
  each	
  service,	
  but	
  there	
  was	
  s9ll	
  jiEer.	
  

•  Suggests	
  variance	
  outside	
  what	
  we	
  are	
  able	
  to	
  
measure	
  by	
  polling	
  the	
  providers’	
  API.	
  



EC2	
  Compute	
  Time	
  Results	
  



Compute	
  Time	
  Anomalies	
  
Other	
  anomalies	
  in	
  EC2	
  compute	
  billing	
  	
  



Compute	
  Time	
  

•  We	
  created	
  a	
  special	
  “fast	
  boot”	
  kernel	
  that	
  booted	
  and	
  
immediately	
  sent	
  heartbeat	
  messages	
  to	
  our	
  control	
  server.	
  	
  

•  Terminated	
  instances	
  Δ	
  seconds	
  aVer	
  launch.	
  	
  
•  Race	
  condi9on	
  causes	
  some	
  instances	
  to	
  not	
  get	
  billed,	
  but	
  
yield	
  roughly	
  2	
  minutes	
  of	
  free	
  up9me.	
  



Storage	
  Billing	
  
•  Provider	
  charges	
  based	
  on	
  its	
  view	
  of	
  storage	
  ops	
  

•  Storage:	
  
•  In	
  Rackspace	
  dele9ng	
  a	
  volume	
  before	
  detaching	
  from	
  an	
  
instance	
  caused	
  it	
  to	
  hang	
  and	
  accrue	
  charges.	
  	
  

•  I/O	
  charges	
  in	
  EC2	
  lower	
  than	
  /proc/diskstats	
  would	
  suggest;	
  
caching	
  or	
  aggrega9on?	
  

•  Storage	
  example:	
  
•  Write(4kb);	
  write(4kb);	
  -­‐>	
  1	
  storage	
  op	
  
•  Write	
  (4kb);	
  seek(1	
  million);	
  write(4kb)	
  -­‐>	
  2	
  storage	
  ops	
  

	
  



IOPS	
  Aggregation/Caching?	
  



Network	
  Billing	
  

•  In	
  EC2	
  for	
  Internet-­‐outbound	
  traffic,	
  underbilled	
  by	
  5.6%	
  of	
  
Nelilter	
  measurements.	
  

•  Rackspace	
  underbilled	
  1	
  GB	
  of	
  Internet-­‐outbound	
  traffic	
  for	
  2	
  of	
  
11	
  instances	
  by	
  35	
  MB	
  and	
  125	
  MB.	
  

	
  



Conclusions	
  
•  Future	
  research	
  should	
  inves9gate	
  the	
  tradeoffs	
  
between	
  performance	
  on	
  the	
  one	
  hand,	
  and	
  
accurate,	
  9mely,	
  transparent	
  resource	
  
accoun9ng	
  and	
  billing	
  on	
  the	
  other.	
  
•  This	
  will	
  likely	
  necessitate	
  collabora9on	
  with	
  
industry.	
  
•  It	
  seems	
  that	
  today,	
  it	
  should	
  be	
  feasible	
  for	
  
providers	
  to	
  expose	
  a	
  billing	
  API,	
  to	
  enable	
  
programma9c	
  queries	
  of	
  billing	
  informa9on.	
  



Thank	
  you.	
  


