
Physical Disentanglement
in a Container-Based File System

Lanyue Lu, Yupu Zhang, Thanh Do, Samer AI-Kiswany
 Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

University of Wisconsin Madison

Motivation

Isolation in various subsystems
➡ resources: virtual machines, Linux containers
➡ security: BSD jail, sandbox
➡ reliability: address spaces

File systems lack isolation
➡ physical entanglement in modern file systems

Three problems due to entanglement
➡ global failures, slow recovery, bundled performance

Global Failures

Definition
➡ a failure which impacts all users of the file system or
even the operating system

Read-Only
➡ mark the file system as read-only
➡ e.g., metadata corruption, I/O failure

Crash
➡ crash the file system or the operating system
➡ e.g., unexpected states, pointer faults

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

Linux 3.X Versions

N
um

be
r o

f F
ai

lu
re

 In
st

an
ce

s
Read-Only Crash

Ext3

Ext4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

150

200

250

300

350

400

Linux 3.X Versions

N
um

be
r o

f F
ai

lu
re

 In
st

an
ce

s
Read-Only Crash

Slow Recovery

File system checker
➡ repair a corrupted file system
➡ usually offline

Current checkers are not scalable
➡ increasing disk capacities and file system sizes
➡ scan the whole file system
➡ checking time is unacceptably long

Scalability of fsck on Ext3

0

200

400

600

800

1000

Fs
ck

 T
im

e
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007Ext3

Bundled Performance

Shared transaction
➡ all updates share a single transaction
➡ unrelated workloads affect each other

Consistency guarantee
➡ the same journal mode for all files
➡ limited flexibility for different tradeoffs

Bundle Performance on Ext3

0

30

60

90

120

150

180

Th
ro

ug
hp

ut
 (M

B/
s)

146.7

76.1

Alone

20
1.9

Together

SQLite Varmail

Server Virtualization

VM1 VM2 VM3 VM4 VM5

VD1 VD2 VD3

VD4 VD5

Shared file
system

VM1 VM2 VM3 VM4 VM5

VD1 VD2 VD3

VD4 VD5

metadata
corruption

Read-Only
or

Crash

All VMs will crash

Virtual Machines

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000

20

40

60

80

100

Time (Second)

Th
ro

ug
hp

ut
 (I

O
PS

)

fsck: 496s + bootup: 68s

VM1 VM2 VM3

Our Solution

A new abstraction for disentanglement

A disentangled file system: IceFS

Three major benefits of IceFS
➡ failure isolation
➡ localized recovery
➡ specialized journaling

Motivation

IceFS

Evaluation

Conclusion

A New Abstraction: Cube

What is a cube
➡ an independent container for a group of files
➡ physically isolated

Interface
➡ create a cube: mkdir(cube_flag)
➡ delete a cube: rmdir()
➡ add files to a cube
➡ remove files to a cube
➡ set cube attributes

Cube Example

c1 b

d

c2

/
a

Cube 1
Cube 2

A Disentangled File System

No shared physical resources
➡ no shared metadata: e.g., block groups
➡ no shared disk blocks or buffers

No access dependency
➡ partition linked lists or trees
➡ avoid directory hierarchy dependency

No bundled transactions
➡ use separate transactions
➡ enable customized journaling modes

IceFS

A prototype based on Ext3 in Linux 3.5

Disentanglement
➡ directory indirection
➡ transaction splitting

Directory Indirection

c1 b

d

c2

/
a

Cube 1
Cube 2

Pathname matching for cubes’ top directory paths

Cubes’ dentries are pinned in memory

App 3 App 1

on-disk
journal

App 2 App 3

in-memory tx preallocated tx committed tx

App 1 App 2

on-disk
journal

(a) Ext3/Ext4 (b) IceFS

Transaction Splitting

Separate transactions from different cubes commit to
the disk journal in parallel

Benefits of Disentanglement

Localized reactions to failures
➡ per-cube read-only and crash

Localized recovery
➡ only check faulty cubes
➡ offline and online

Specialized journaling
➡ parallel journaling
➡ diverse journal modes
➡ no journal, no fsync, writeback, ordered, data

Motivation

IceFS

Evaluation

Conclusion

Fast Recovery

0

200

400

600

800

1000

Fs
ck

 T
im

e
(s

)

File-system Capacity
200GB 400GB 600GB 800GB

231

476

723

1007

35 64 91 122

Ext3 IceFS

Specialized Journaling

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

OR OR NJ OR

76.1

120.6

220.3

125.4

Ext3
OR OR OR NJ

1.9 9.8 5.6

103.4

IceFS

SQLite Varmail OR: ordered
NJ: no journal

Server Virtualization

VM1 VM2 VM3 VM4 VM5

VD1 VD2 VD3

VD4 VD5

Shared file
system

metadata
corruption

Server Virtualization

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100
Th

ro
ug

hp
ut

 (I
O

PS
)

IceFS-Offline

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700
0

20

40

60

80

100

Time (Second)

IceFS-Online

fsck: 35s
+

bootup: 67s

fsck: 74s
+

bootup: 39s

VM1 VM2 VM3

Conclusion

File systems lack physical isolation

Our contribution
➡ a new abstraction: cube
➡ a disentangled file system: IceFS
➡ demonstrate its benefits:
➡ isolated failures
➡ localized recovery
➡ specialized journaling
➡ improving both reliability and performance

 Questions ?

IceFS Disk Layout

SB Sn

cube inode number, cube pathname
orphan inode list, cube attributes

cube 0

S0 S1 S2 bg bg bg bg bg

cube 1 cube 2

Each cube has one sub-super block (Si) and its own
block groups (bg)

