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Motivation

Isolation in various subsystems
➡ resources: virtual machines, Linux containers
➡ security: BSD jail, sandbox
➡ reliability: address spaces

File systems lack isolation
➡ physical entanglement in modern file systems 

Three problems due to entanglement
➡ global failures, slow recovery, bundled performance 



Global Failures

Definition
➡ a failure which impacts all users of the file system or 
even the operating system

Read-Only
➡ mark the file system as read-only
➡ e.g., metadata corruption, I/O failure

Crash
➡ crash the file system or the operating system 
➡ e.g., unexpected states, pointer faults
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Ext4
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Slow Recovery

File system checker
➡ repair a corrupted file system
➡ usually offline 

Current checkers are not scalable
➡ increasing disk capacities and file system sizes
➡ scan the whole file system
➡ checking time is unacceptably long



Scalability of fsck on Ext3
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Bundled Performance

Shared transaction 
➡ all updates share a single transaction
➡ unrelated workloads affect each other 

Consistency guarantee
➡ the same journal mode for all files
➡ limited flexibility for different tradeoffs



Bundle Performance on Ext3
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Server Virtualization

VM1 VM2 VM3 VM4 VM5

VD1 VD2 VD3

VD4 VD5

Shared file 
system
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Read-Only
or

Crash

All VMs will crash



Virtual Machines
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Our Solution

A new abstraction for disentanglement

A disentangled file system: IceFS

Three major benefits of IceFS
➡ failure isolation
➡ localized recovery 
➡ specialized journaling
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A New Abstraction: Cube

What is a cube
➡ an independent container for a group of files 
➡ physically isolated 

Interface
➡ create a cube: mkdir(cube_flag)
➡ delete a cube: rmdir()
➡ add files to a cube
➡ remove files to a cube
➡ set cube attributes



Cube Example
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A Disentangled File System

No shared physical resources
➡ no shared metadata: e.g., block groups
➡ no shared disk blocks or buffers 

No access dependency
➡ partition linked lists or trees
➡ avoid directory hierarchy dependency

No bundled transactions
➡ use separate transactions
➡ enable customized journaling modes



IceFS

A prototype based on Ext3 in Linux 3.5

Disentanglement
➡ directory indirection
➡ transaction splitting



Directory Indirection
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Pathname matching for cubes’ top directory paths

Cubes’ dentries are pinned in memory



App 3 App 1

on-disk 
journal

App 2 App 3

in-memory tx preallocated tx committed tx

App 1 App 2

on-disk
journal

(a) Ext3/Ext4 (b) IceFS

Transaction Splitting

Separate transactions from different cubes commit to 
the disk journal in parallel



Benefits of Disentanglement

Localized reactions to failures
➡ per-cube read-only and crash

Localized recovery
➡ only check faulty cubes
➡ offline and online

Specialized journaling
➡ parallel journaling 
➡ diverse journal modes
➡ no journal, no fsync, writeback, ordered, data
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Fast Recovery
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Specialized Journaling

0

50

100

150

200

250

Th
ro

ug
hp

ut
 (M

B/
s)

OR OR NJ OR

76.1

120.6

220.3

125.4

Ext3
OR OR OR NJ

1.9 9.8 5.6

103.4

IceFS

SQLite Varmail OR: ordered
NJ: no journal



Server Virtualization
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Server Virtualization
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Conclusion

File systems lack physical isolation

Our contribution
➡ a new abstraction: cube
➡ a disentangled file system: IceFS
➡ demonstrate its benefits:
➡ isolated failures
➡ localized recovery
➡ specialized journaling
➡ improving both reliability and performance



                       Questions ? 



IceFS Disk Layout

SB Sn

cube inode number, cube pathname
orphan inode list, cube attributes

cube 0

S0 S1 S2 bg bg bg bg bg

cube 1 cube 2

Each cube has one sub-super block (Si) and its own 
block groups (bg) 


