Statistical Debugging for Real-World
Performance Problems

Linhai Song
Advisor: Prof. Shan Lu

Software Efficiency is Critical

* No one wants slow and inefficient software
— Frustrate end users
— Cause economic |OSS

e Software efficiency is increasingly important
— Hardware is not getting faster (per-core)

— Software is getting more complex
— Energy saving is getting more urgent

Performance Bugs

—

Login / Register

 An example

Advanced search | Saved searches

[usatvesrzine Reporta bug | statistic

* Implementation mistakes causing inefficiency

— Reportor: L Email Updates: Subscribe

rows=0 causing g ey
Category: Server: Partition Severity: S5 (Performance)
no cache allocated \

Version: 5.1.14-log 0S: Linux (Ubuntu 6.10 x86_64/Windows)
. .
:start_bulk_inser

Modified:

Assigned to: Alexey Botchkov Target Version:

_[view | [Add Comment | [Files | [Developer | [Edit Submission | [View Progress Log | | Contributions

[21 Feb 2007 14:49] Guillaume Lefranc

Description:
Inserting data with LOAD
I haven't tried with SQL dumps to see if

11y slow with partitioned table and scmetimes crawl to a stop.

INFILE is painf
e problem repeats.

void ha_partitlg (int rows

How to repeat:
CREATE TABLE ti (

t(10) unsigned NOT NULL DEFAULT ‘o',

£2 int(10) unsigned DEFAULT NULL,

£3 char(33) CHARACTER SET latinl NOT NULL DEFAULT '',
char(15) DEFAULT NULL

datetime X
char(40) CHARACTER SET latinl DEFAULT NULL,
£7 text CHARACTER SET latini,

KEY £1_idx (£1),

KEY £5_idx (£5)

) ENGINI

- | DBUG_VOID_RETURN;
rows= rows/m_tot_parts + 1;
+ rows=rows ? rows/m_tot_parts+1:0; :
...... |/ fast path using caches S
MySQL Bug 26527

11

ited)) (PARTITION ml VALUES LESS
PARTITION m3 VALUES LESS THAN
ON mS VALUES LESS THAN (6)
ISAM, PARTITION m7 VALUES LESS THAN (2) ENGINE
ON m9 VALUES LESS THAN (10) ENGINE =
PARTITION mil VALUES LESS THAN (12) ENGINE =

tf8 /*150100 PARTITION BY RANGE (month (vi:
SS THAN (3) ENGINE =

ON mé VALUES LESS THAN (9) EN
ITION mi0 VALUES LESS THAN (11) EN

How to Diaghose Performance Bugs

e Difficult to avoid

— Lack performance documentation for APls
— Workloads are quickly changing

* Diagnosis tools are needed

* The state of the art is preliminary
e Profilers void ha_partition int rows) {

if"(!.r.é)ws) Not in profiling results

DBUG_VOID _RETURN;
rows= rows/m_tot_parts + 1;
+ rows=rows ? rows/m_tot_parts+1:0;
....... // fast path using caches

} MySQL Bug 26527

How to Diaghose Functional Bugs

* The state of the art is mature
— Has been studied for decades
— Many successful techniques have been proposed

 Statistical debugging

a) (@
Input: J Bad J GoodJ

G G B: p==NULL
...... R: k > O
inti=0; o i
A Li<

Program: int j = 10; J

int k = fopen(...);
if (p==NULL)

printf(“%s\n”, p->str);
...... % B: p!=NULL

R:k>0

S:i<j

What Can We Learn?

* How about statistical debugging

— Q1: How to identify failure runs?

— Q2: How to obtain inputs?

— Q3: How to design predicates?

D

) (e
J GoodJ

. L

%

< ~
Symptom: E failure =|

intj=10;

int k = fopen(...);

if (p==NULL)
printf(“%s\n”, p->str);

Program:

B: p==NULL
R:k>0
S:i<j

B: p!=NULL
R:k>0

Statistical
Model

S:i<j

Contributions

* Diagnosis process for performance bugs
— Performance problems are noticed by comparison
— Inputs are provided during reporting
 Statistical in-house performance diagnosis
— 3 popular predicates
— 2 widely used statistical models
 Statistical on-line performance diagnosis

— Same diagnosis capability with <10% overhead
— Not sacrifice diagnosis latency

* Overview

* Diagnosis process study
* In-house diagnosis study
* On-line diagnosis study
e Conclusion

* Overview

* Diagnosis process study
* In-house diagnosis study
* On-line diagnosis study
e Conclusion

* Overview

* Diagnosis process study
* In-house diagnosis study
* On-line diagnosis study
* Conclusion

Methodology

* Application and Bug Source

Bug DB # Bug User

App. Software Type Language| MLOC History Tags |# Bugs Perceived

Apache|ommand-line Utility + /00 10.45 | 13y | N/A 25 16

Server + Library

Chrome|GUI Application |C/C++ 140 | 4y N/A 10 5
GCC |Compiler c/C++ |57 | 13y Efn’zpr'l'jg 11 9

Mozilla|GUI Application [C++/]S 4.7 | 14y | perf 36 19

MysQLl |Server Software |C/C++/C#| 1.3 | 10y S5 28 17

Total: 110 65

Q1: How to identify failure runs?

* How about statistical debugging

— Q1: How to identify failure runs?

Q) a J
Input: J Bad J Good J
G @ B: p==NULL

...... R:k>0
inti=0;

int j = 10; el
int k = fopen(...);

if (p==NULL)
printf(“%s\n”, p->str);

------ % B: p!=NULL
n N

R:k>0

Symptom.' fai[ure g S: |<J [T

Program:

How Perf. Bugs are Observed

m MySQL

® Mozilla
GCC

B Chrome

® Apache

withinone cross multiple Not using
code base code bases comparison

How Perf. Bugs are Observed

the same input with different configuration
* inputs with different sizes
inputs with slightly different functionality

m MySQL
m Mozilla

20
GCC
10 R)
B Chrome
0]
® Apache

cross multiple Not using
code bases comparison

within one
code base

How Perf. Bugs are Observed

* same applications’ different versions
» different applications

40 -

20 -

m MySQL
m Mozilla

m— ece
B Chrome
— t

o]] M Apache
within one | cross multiple Not using
code base code bases comparison

10 -

How Perf. Bugs are Observed

40
20 - ® Mozilla
GCC
Tl = h
B Chrome
0 - s
o]] M Apache
withinone cross multiple Not using
code base code bases comparison

Q2: How to obtain inputs?

* How about statistical debugging
— Q1: How to identify failure runs?
— Q2: How to obtain inputs?

C)) @ >
Input: Bad J GoodJ
z

2 2 B: p==NULL
...... R: k > O
inti=0; o
intj = 10; > 1]

Program:

int k = fopen(...);
if (p==NULL)
printf(“%s\n”, p->str);

------ % B: p!=NULL

R:k>0

S:i<j

Bad Inputs Provided in Bug Reports

Cover all bugs

m MySQL

® Mozilla
GCC

B Chrome

® Apache

Good Inputs Provided in Bug Reports

Good inputs provided

m MySQL

® Mozilla
GCC

® Chrome

® Apache

Implications

* Performance bugs are observed differently

— Noticed through comparison

* Easy to tell successful runs from failure runs
— Case 1: through comparison
— Case 2: symptom is dramatic

 Statistical debugging is a natural fit

* Overview

* Diagnosis process study
* In-house diagnosis study
* On-line diagnosis study
* Conclusion

* Overview

* Diagnosis process study

* In-house diagnosis study
* On-line diagnosis study

e Conclusion

* |[n-house diagnosis

* Predicate design

— Branch it (p) ..
else ...

Predicate

* |[n-house diagnosis

* Predicate design

— Branch if (p) ... | | n=fprintf(...);
else

— Return

Predicate

* In-house diagnosis
* Predicate design

— Branch if (p) ... | | n=fprintf(...); | |inti,], k;
— Return else -
— Scalar-pair

Predicate

* In-house diagnosis

* Predicate design

— Branch if (p) ... | | n=fprintf(...); | |inti,], k;
— Return else -
B Scalar-pair Predicate

 Statistical model design

* In-house diagnosis

* Predicate design

— Branch if (p) ... | | n=fprintf(...); | |inti,], k;
— Return else -
— Scalar-pair

Predicate

 Statistical model design

X

— Basic model

* In-house diagnosis
* Predicate design

— Branch if (p) ... | | n=fprintf(...); | |inti,], k;
— Return else -
— Scalar-pair

Predicate

 Statistical model design

— Basic model
— Delta-LDA

Experimental Methodology

e Benchmark selection
— 8 C bugs, 8 C++ bugs and 4 Java bugs

* |Input desigh and other setting

— 10 failure and 10 successful runs

* Techniques under comparison
— CBI for C programs
— Pin for C++ programs
— Compared with profiling results from OProfile

BuglD
Mozilla258793
Mozilla299742
Mozilla347306
Mozilla411722
MySQL15811
MySQL26527
MySQL27287
MySQL40337
MySQL42649
MySQL44723
Apache3278
Apache34464

Experimental Results

Candidate Predicates

Branch Return S-pair
64024 152724 /
64089 150973 /
6901 6729 30953
8780 6889 34378
1198 886 /
7443 7631 /
5377 5762 /
7547 8161 /
15920 11800 /
10649 9130 /

7 57 102

17 23 203

Branch Return S-pair

V1
V1

V1

V1
V1
V1
V1

Basic Model

/

ALDA

Branch

V1

V1

V1

V3

Profiler

V1

V1

V1

V5

Experimental Results

Candidate Predicates Basic Model ALDA Profiler

BugID Branch Return S-pair | Branch Return S-pair | Branch
Mozilla258793 64024 152724 / V1 - -
Mozilla299742 64089 150973 / V1 - -
Mozilla347306 6901 6729 30953 - V1 V1
Mozilla411722 8780 6889 34378 V1 - -
MySQL15811 1198 886 / - V1 V1
MySQL26527 7443 7631 / V1 - -
MySQL27287 5377 5762 / - V1 V1
MySQL40337 7547 8161 / V1 - -
MySQL42649 15920 11800 / V1 - -
MySQL44723 10649 9130 / - -
Apache3278 7 57 102 - -
Apache34464 17 23 203 V3 V5

BuglD
Mozilla258793
Mozilla299742
Mozilla347306
Mozilla411722
MySQL15811
MySQL26527
MySQL27287
MySQL40337
MySQL42649
MySQL44723
Apache3278
Apache34464

Experimental Results

Candidate Predicates

Branch Return S-pair
64024 152724 /
64089 150973 /
6901 6729 30953
8780 6889 34378
1198 886 /
7443 7631 /
5377 5762 /
7547 8161 /
15920 11800 /
10649 9130 /

7 57 102

17 23 203

Branch Return S-pair

V1
V1

V1

V1
V1
V1
V1

Basic Model

BuglD
Mozilla258793
Mozilla299742
Mozilla347306
Mozilla411722
MySQL15811
MySQL26527
MySQL27287
MySQL40337
MySQL42649
MySQL44723
Apache3278
Apache34464

Experimental Results

Candidate Predicates

Branch Return S-pair
64024 152724 /
64089 150973 /
6901 6729 30953
8780 6889 34378
1198 886 /
7443 7631 /
5377 5762 /
7547 8161 /
15920 11800 /
10649 9130 /

7 57 102

17 23 203

Branch Return S-pair

V1
V1

V1

V1
V1
V1
V1

Basic Model

/

* Overview

* Diagnosis process study

* In-house diagnosis study
* On-line diagnosis study

e Conclusion

* Overview

* Diagnosis process study
* In-house diagnosis study
* On-line diagnosis study
e Conclusion

Experimental Methodology

* Challenges in on-line diagnosis
— Diagnosis capability
— Low overhead

 Benchmarks and inputs

* Tool implementation
— CBIl in sampling mode for return predicates
— LBR for branch predicates
— Rough sampling rate is 1/100

Experimental Results

BuglD Diagnosis Overhead Requested
Capability Failure Runs

Mozilla258793 V1 1.81% 1000
Mozilla299742 V1 7.52% 1000
Mozilla347306 V1 3.01% 10
Mozilla411722 V1 3.35% 1000
MySQL15811 V1 8.58% 10
MySQL26527 V1 7.06% 1000
MySQL27287 V1 2.62% 10
MySQL40337 V1 3.32% 1000
MySQL42649 V1 4.67% 1000
MySQL44723 V1 0.40% 1000
Apache3278 V1 3.22% 1000
Apache34464 V1 2.13% 10

Experimental Results

BuglD Diagnosis Overhead Requested
Capability Failure Runs

Mozilla258793 V1 1.81% 1000
Mozilla299742 V1 7.52% 1000
Mozilla347306 V1 3.01% 10
Mozilla411722 V1 3.35% 1000
MySQL15811 V1 8.58% 10
MySQL26527 V1 7.06% 1000
MySQL27287 V1 2.62% 10
MySQL40337 V1 3.32% 1000
MySQL42649 V1 4.67% 1000
MySQL44723 V1 0.40% 1000
Apache3278 V1 3.22% 1000
Apache34464 V1 2.13% 10

Conclusion and Future Works

e Study diagnosis process for perf. bugs
— Noticed through comparison
— Good and bad inputs are provided

e Study statistical debugging on perf. bugs

— Branch predicates + two statistical models

e Future works
— Analyze inefficient loops
— Provide detailed fix strategies

Thanks a lot!
wiﬂb

= 09"

et

¥
i ——
Zw |

