
Statistical Debugging for Real-World
Performance Problems

Linhai Song

Advisor: Prof. Shan Lu

1

Software Efficiency is Critical

• No one wants slow and inefficient software

– Frustrate end users

– Cause economic loss

• Software efficiency is increasingly important

– Hardware is not getting faster (per-core)

– Software is getting more complex

– Energy saving is getting more urgent

Still Not Finished?

Performance Bugs

• Implementation mistakes causing inefficiency

• An example

void ha_partition::start_bulk_insert(int rows) {

 …….
- if (!rows)
- DBUG_VOID_RETURN;
- rows= rows/m_tot_parts + 1;
+ rows= rows ? rows/m_tot_parts + 1 : 0;
 ……. // fast path using caches

} MySQL Bug 26527

MySQL Bug DB

20 X Slower

rows=0 causing
no cache allocated

How to Diagnose Performance Bugs

• Difficult to avoid

– Lack performance documentation for APIs

– Workloads are quickly changing

• Diagnosis tools are needed

• The state of the art is preliminary

• Profilers void ha_partition::start_bulk_insert(int rows) {

 …….
- if (!rows)
- DBUG_VOID_RETURN;
- rows= rows/m_tot_parts + 1;
+ rows= rows ? rows/m_tot_parts + 1 : 0;
 ……. // fast path using caches

} MySQL Bug 26527

Not in profiling results

How to Diagnose Functional Bugs

• The state of the art is mature

– Has been studied for decades

– Many successful techniques have been proposed

• Statistical debugging

……
int i = 0;
int j = 10;
int k = fopen(…);
if (p==NULL)
 printf(“%s\n”, p->str);
……

Bad Good

Statistical
Model

Predicates

B: p==NULL

R: k > 0

S: i<j

Rank Predicates Score

1 B:p==NULL ……

… …… ……

Predicates

B: p!=NULL

R: k > 0

S: i<j

Input:

Program:

Symptom: failure

What Can We Learn?

• How about statistical debugging

– Q1: How to identify failure runs?

– Q2: How to obtain inputs?

– Q3: How to design predicates?

……
int i = 0;
int j = 10;
int k = fopen(…);
if (p==NULL)
 printf(“%s\n”, p->str);
……

failure

Bad Good

Statistical
Model

Predicates

B: p==NULL

R: k > 0

S: i<j

Rank Predicates Score

1 B:p==NULL ……

… …… ……

Predicates

B: p!=NULL

R: k > 0

S: i<j

Input:

Program:

Symptom:

Q2?

Q1?

Q3?

Contributions

• Diagnosis process for performance bugs

– Performance problems are noticed by comparison

– Inputs are provided during reporting

• Statistical in-house performance diagnosis

– 3 popular predicates

– 2 widely used statistical models

• Statistical on-line performance diagnosis

– Same diagnosis capability with <10% overhead

– Not sacrifice diagnosis latency

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Methodology

• Application and Bug Source

App.

Apache

Chrome

GCC

Mozilla

MySQL

Software Type

Server Software

GUI Application

GUI Application

Compiler

Command-line Utility +
Server + Library

Language

C/Java

C/C++

C/C++

C++/JS

C/C++/C#

MLOC

1.3

Bug DB
History Tags

Compile-
time-hog

5.7

4.7

14.0

N/A

N/A

perf

S5

0.45

14 y

13 y

10 y

13 y

4 y

Bugs

25

10

11

36

28

Total: 110

Bug User
Perceived

16

5

9

19

17

65

Q1: How to identify failure runs?

• How about statistical debugging

– Q1: How to identify failure runs?

……
int i = 0;
int j = 10;
int k = fopen(…);
if (p==NULL)
 printf(“%s\n”, p->str);
……

failure

Bad Good

Statistical
Model

Predicates

B: p==NULL

R: k > 0

S: i<j

Rank Predicates Score

1 B:p==NULL ……

… …… ……

Predicates

B: p!=NULL

R: k > 0

S: i<j

Input:

Program:

Symptom: Q1?

How Perf. Bugs are Observed

0

10

20

30

40

 within one
code base

cross multiple
code bases

Not using
comparison

MySQL

Mozilla

GCC

Chrome

Apache

Dominating

How Perf. Bugs are Observed

0

10

20

30

40

 within one
code base

cross multiple
code bases

Not using
comparison

MySQL

Mozilla

GCC

Chrome

Apache

• the same input with different configuration
• inputs with different sizes
• inputs with slightly different functionality

How Perf. Bugs are Observed

0

10

20

30

40

 within one
code base

cross multiple
code bases

Not using
comparison

MySQL

Mozilla

GCC

Chrome

Apache

• same applications’ different versions
• different applications

How Perf. Bugs are Observed

0

10

20

30

40

 within one
code base

cross multiple
code bases

Not using
comparison

MySQL

Mozilla

GCC

Chrome

Apache

Q2: How to obtain inputs?

• How about statistical debugging

– Q1: How to identify failure runs?

– Q2: How to obtain inputs?

……
int i = 0;
int j = 10;
int k = fopen(…);
if (p==NULL)
 printf(“%s\n”, p->str);
……

failure

Bad Good

Statistical
Model

Predicates

B: p==NULL

R: k > 0

S: i<j

Rank Predicates Score

1 B:p==NULL ……

… …… ……

Predicates

B: p!=NULL

R: k > 0

S: i<j

Input:

Program:

Symptom:

Q2?

Bad Inputs Provided in Bug Reports

0

10

20

30

40

50

1/? n/?

MySQL

Mozilla

GCC

Chrome

Apache

Cover all bugs

Good Inputs Provided in Bug Reports

0

5

10

15

20

25

30

35

?/0 ?/1 ?/n

MySQL

Mozilla

GCC

Chrome

Apache

Good inputs provided

Implications

• Performance bugs are observed differently

– Noticed through comparison

• Easy to tell successful runs from failure runs

– Case 1: through comparison

– Case 2: symptom is dramatic

• Statistical debugging is a natural fit

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Design

• In-house diagnosis

• Predicate design

– Branch

if (p) …
else ….

Predicate

×

Design

• In-house diagnosis

• Predicate design

– Branch

– Return

if (p) …
else ….

n=fprintf(…);

Predicate

×

Design

• In-house diagnosis

• Predicate design

– Branch

– Return

– Scalar-pair

if (p) …
else ….

n=fprintf(…); int i, j, k;
…
i = …;

Predicate

×

Design

• In-house diagnosis

• Predicate design

– Branch

– Return

– Scalar-pair

• Statistical model design

if (p) …
else ….

n=fprintf(…); int i, j, k;
…
i = …;

Model

Predicate

×

Design

• In-house diagnosis

• Predicate design

– Branch

– Return

– Scalar-pair

• Statistical model design

– Basic model

if (p) …
else ….

n=fprintf(…); int i, j, k;
…
i = …;

Model

Predicate

×

Design

• In-house diagnosis

• Predicate design

– Branch

– Return

– Scalar-pair

• Statistical model design

– Basic model

– Delta-LDA

if (p) …
else ….

n=fprintf(…); int i, j, k;
…
i = …;

Model

Predicate

×

Experimental Methodology

• Benchmark selection

– 8 C bugs, 8 C++ bugs and 4 Java bugs

• Input design and other setting

– 10 failure and 10 successful runs

• Techniques under comparison

– CBI for C programs

– Pin for C++ programs

– Compared with profiling results from OProfile

Experimental Results

Candidate Predicates Basic Model ΔLDA Profiler

BugID Branch Return S-pair Branch Return S-pair Branch

Mozilla258793 64024 152724 / √1 - / - -

Mozilla299742 64089 150973 / √1 - / - -

Mozilla347306 6901 6729 30953 - - - √1 √1

Mozilla411722 8780 6889 34378 √1 - - - -

MySQL15811 1198 886 / - - / √1 √1

MySQL26527 7443 7631 / √1 - / - -

MySQL27287 5377 5762 / - - / √1 √1

MySQL40337 7547 8161 / √1 - / - -

MySQL42649 15920 11800 / √1 - / - -

MySQL44723 10649 9130 / √1 - / - -

Apache3278 7 57 102 - √1 - - -

Apache34464 17 23 203 - - - √3 √5

… … … … … … … … …

Experimental Results

Candidate Predicates Basic Model ΔLDA Profiler

BugID Branch Return S-pair Branch Return S-pair Branch

Mozilla258793 64024 152724 / √1 - / - -

Mozilla299742 64089 150973 / √1 - / - -

Mozilla347306 6901 6729 30953 - - - √1 √1

Mozilla411722 8780 6889 34378 √1 - - - -

MySQL15811 1198 886 / - - / √1 √1

MySQL26527 7443 7631 / √1 - / - -

MySQL27287 5377 5762 / - - / √1 √1

MySQL40337 7547 8161 / √1 - / - -

MySQL42649 15920 11800 / √1 - / - -

MySQL44723 10649 9130 / √1 - / - -

Apache3278 7 57 102 - √1 - - -

Apache34464 17 23 203 - - - √3 √5

… … … … … … … … …

Experimental Results

Candidate Predicates Basic Model ΔLDA Profiler

BugID Branch Return S-pair Branch Return S-pair Branch

Mozilla258793 64024 152724 / √1 - / - -

Mozilla299742 64089 150973 / √1 - / - -

Mozilla347306 6901 6729 30953 - - - √1 √1

Mozilla411722 8780 6889 34378 √1 - - - -

MySQL15811 1198 886 / - - / √1 √1

MySQL26527 7443 7631 / √1 - / - -

MySQL27287 5377 5762 / - - / √1 √1

MySQL40337 7547 8161 / √1 - / - -

MySQL42649 15920 11800 / √1 - / - -

MySQL44723 10649 9130 / √1 - / - -

Apache3278 7 57 102 - √1 - - -

Apache34464 17 23 203 - - - √3 √5

… … … … … … … … …

Experimental Results

Candidate Predicates Basic Model ΔLDA Profiler

BugID Branch Return S-pair Branch Return S-pair Branch

Mozilla258793 64024 152724 / √1 - / - -

Mozilla299742 64089 150973 / √1 - / - -

Mozilla347306 6901 6729 30953 - - - √1 √1

Mozilla411722 8780 6889 34378 √1 - - - -

MySQL15811 1198 886 / - - / √1 √1

MySQL26527 7443 7631 / √1 - / - -

MySQL27287 5377 5762 / - - / √1 √1

MySQL40337 7547 8161 / √1 - / - -

MySQL42649 15920 11800 / √1 - / - -

MySQL44723 10649 9130 / √1 - / - -

Apache3278 7 57 102 - √1 - - -

Apache34464 17 23 203 - - - √3 √5

… … … … … … … … …

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Outline

• Overview

• Diagnosis process study

• In-house diagnosis study

• On-line diagnosis study

• Conclusion

Experimental Methodology

• Challenges in on-line diagnosis

– Diagnosis capability

– Low overhead

• Benchmarks and inputs

• Tool implementation

– CBI in sampling mode for return predicates

– LBR for branch predicates

– Rough sampling rate is 1/100

Experimental Results

BugID Diagnosis
Capability

Overhead Requested
Failure Runs

Mozilla258793 √1 1.81% 1000

Mozilla299742 √1 7.52% 1000

Mozilla347306 √1 3.01% 10

Mozilla411722 √1 3.35% 1000

MySQL15811 √1 8.58% 10

MySQL26527 √1 7.06% 1000

MySQL27287 √1 2.62% 10

MySQL40337 √1 3.32% 1000

MySQL42649 √1 4.67% 1000

MySQL44723 √1 0.40% 1000

Apache3278 √1 3.22% 1000

Apache34464 √1 2.13% 10

… … … …

Experimental Results

BugID Diagnosis
Capability

Overhead Requested
Failure Runs

Mozilla258793 √1 1.81% 1000

Mozilla299742 √1 7.52% 1000

Mozilla347306 √1 3.01% 10

Mozilla411722 √1 3.35% 1000

MySQL15811 √1 8.58% 10

MySQL26527 √1 7.06% 1000

MySQL27287 √1 2.62% 10

MySQL40337 √1 3.32% 1000

MySQL42649 √1 4.67% 1000

MySQL44723 √1 0.40% 1000

Apache3278 √1 3.22% 1000

Apache34464 √1 2.13% 10

… … … …

Conclusion and Future Works

• Study diagnosis process for perf. bugs

– Noticed through comparison

– Good and bad inputs are provided

• Study statistical debugging on perf. bugs

– Branch predicates + two statistical models

• Future works

– Analyze inefficient loops

– Provide detailed fix strategies

40

Thanks a lot!

