
Snapshots in a Flash with ioSnapTM

Sriram Subramanian, Swami Sundararaman, Nisha Talagala,
Andrea Arpaci-Dusseau, Remzi Arpaci-Dusseau

Copyright © 2014 Fusion-io, Inc. All rights reserved.

Presented By: Samer Al-Kiswany

Snapshots in a Flash with ioSnapTM (patent pending technology)

Snapshots Overview

• Point-in-time representation of the state of a storage device
• Snapshots are primarily used for backup, disaster recovery

• Creates/deletes are common operations
• Accesses/activates are rare operations

• Use Copy-on-Write (CoW) or Redirect-on-Write (RoW)

Copyright © 2014 Fusion-io, Inc. All rights reserved.2

10101010 1010

10101010

Existing Data

Update Data

Existing Data Existing Data

Update Data

Snapshots in a Flash with ioSnapTM (patent pending technology)

Why Rethink Snapshots for Flash?
• Flash is revolutionizing storage systems

• Accelerating data centers, enterprise apps, desktops

• Natural fit for supporting snapshots
• Redirect-on-Write: never overwrite existing data
• Log-structuring: data ordered on their creation time (almost)

• Rate of data-change is higher for Flash devices
• e.g., multi-threaded 8KB IOs, TB capacity device

• Flash: 30K IOPS and device fills in ~1 hour
• HDD : 500 IOPS and device fills in ~3 days

Copyright © 2014 Fusion-io, Inc. All rights reserved.3

Snapshots in a Flash with ioSnapTM (patent pending technology)

Snapshots in Flash Challenges

• Users are sensitive to performance variability
• Need predictable performance all the time

• NAND flash has low endurance & inefficient in-place writes
• In-place updates of reference counts not possible

• Cannot waste storage space for storing snapshot metadata
• $/GB is high and need to keep costs low

Copyright © 2014 Fusion-io, Inc. All rights reserved.4

Snapshots in a Flash with ioSnapTM (patent pending technology)

ioSnapTM Overview

• First flash-aware snapshotting system
• Leverages RoW in FTL to support snapshot operations
• Supports large number of writable snapshots (216)
• Proposes usage of epochs in FTL to maintain log-time ordering
• Embraces rate-limiting to minimize performance implications

• Performance Results (prototype built into Fusion-io VSL driver)

• Instantaneous snapshot creation/deletion (~50usec, 4k metadata)

• Matches vanilla read/write performance numbers
• Provides predictable performance for foreground IOs

Copyright © 2014 Fusion-io, Inc. All rights reserved.5

Snapshots in a Flash with ioSnapTM (patent pending technology)

Outline

• Introduction

• ioSnapTM Design

• Evaluation

• Conclusions

Copyright © 2014 Fusion-io, Inc. All rights reserved.6

Snapshots in a Flash with ioSnapTM (patent pending technology)

Design Goals

Goals
• Negligible impact on foreground performance
• Predictable foreground performance
• Minimal space overheads for snapshot metadata
• Integrate with existing FTLs

Copyright © 2014 Fusion-io, Inc. All rights reserved.7

Snapshots in a Flash with ioSnapTM (patent pending technology)

Segment
Boundary

Creating / Deleting Snapshots in Flash

Key concept:

Infinite size logS1 S2 S3 SN

Snapshot

Deletion: write a snapshot deletion note
Creation: write a snapshot create note in the log

Copyright © 2014 Fusion-io, Inc. All rights reserved.8

Leverage time ordering of data in a log to create snapshots

Segment 1 Segment 2 Segment N

Snapshot creation/deletion is fast & negligible (fixed) metadata

Snapshots in a Flash with ioSnapTM (patent pending technology)

Well What About Segment Cleaner?
10 20 30 10 40 60

S1 Active

Segment
Boundary

Snapshot

10 20 30 1040 60

Active

70

S1 Active S1 Active

10 10 40 60

Active S1 Active S1 Active

40

Epoch 1 Epoch 2

LBA
Epoch

60 10 20 70 30 10

20 30

Epoch: notion of period of time

Copyright © 2014 Fusion-io, Inc. All rights reserved.9

Epochs help preserve log-time ordering

Snapshots in a Flash with ioSnapTM (patent pending technology)

Managing Liveness of blocks
• Issue: snapshots indirectly increase the reference count

• Validity bitmap with a single bit doesn’t work

• Possible solutions:
• Maintain more bits/block (216 snapshot implies 16x increase in bitmaps)
• Selectively maintain per sub-segment bitmap for snapshots

• Only create a bitmap if a snapshot has (or modified) data in it

Insight: determine if a given block has at least one
reference to it

Copyright © 2014 Fusion-io, Inc. All rights reserved.10

Snapshots in a Flash with ioSnapTM (patent pending technology)

1 0 0 01 1 1 1 1 0 0 01 1 1 1

Preserving Liveness Via CoW Validity Bitmaps
Epoch 1

Segment
Boundary Snapshot

10 20 30 40 60

1 0 0 01 1 1 1
Epoch 1

10 20 30 40 60 10

1 0 0 01 1 1 1

1 1 0 00 1 1 1

Bits needed
to be flipped

Validity
Map CoW

Epoch 2

Epoch 1

Epoch 1

Epoch 2 (step1)

Epoch 2 (step2)

Copyright © 2014 Fusion-io, Inc. All rights reserved.11

Snapshots in a Flash with ioSnapTM (patent pending technology)

Snapshot-Aware Segment Cleaner
Epoch 1

10 20 30 10 60

1 0 0 00 1 1 1Epoch 1

10 60 70

0 1 1 10 1 1 0Epoch 2

Merge Bitmaps 0 1 1 1

Valid Block

Invalid Block

Epoch 2

Epoch 1

60

1 0 0 0 1 1 1Epoch 1

10 60 70

0 1 1 1 1 1 0Epoch 2

Epoch 2

20 30 10Cleaned Segment

Epoch 1

Copyright © 2014 Fusion-io, Inc. All rights reserved.12

Segment
Boundary Snapshot

Segment cleaner preserves log-time ordering

Snapshots in a Flash with ioSnapTM (patent pending technology)

Design Summary

• Leverage RoW and implicit time ordering in the Log
• Epochs preserve log-time ordering even with a cleaner
• Sub-segment-level bitmaps to track validity of blocks
• Snapshot-aware cleaner preserves log-time and block validity

• Snapshot management
• Background snapshot activation
• Rate-limiting to provide predictable foreground performance

Copyright © 2014 Fusion-io, Inc. All rights reserved.13

Snapshots in a Flash with ioSnapTM (patent pending technology)

Outline

• Introduction

• ioSnapTM Design

• Evaluation

• Conclusions

Copyright © 2014 Fusion-io, Inc. All rights reserved.14

Snapshots in a Flash with ioSnapTM (patent pending technology)

Evaluation
• How does it compare with existing snapshotting systems?

• What’s the impact on user IOs in the absence of snapshots?

• Snapshot creation/deletion time? Implications on user IO?

• Implications of a snapshot-aware segment cleaner?

• How long does it talk to activate a snapshot?
• Implications on the crash recovery mechanism?

Setup: quad core Intel i7 processor, 1.2TB NAND flash, 12GB RAM, Linux
2.6.35, older generation of Fusion-io VSL driver, 4K Block sizes

Copyright © 2014 Fusion-io, Inc. All rights reserved.15

Snapshots in a Flash with ioSnapTM (patent pending technology)

Comparison with BTRFS (1)
Impact on foreground latency upon snapshot creation

Around 8 GB of sequential writes followed by a random workload interspersed by a
snapshot every 5 sec

Snapshots in ioSnap does not impact foreground latencySnapshots in ioSnap does not impact foreground latency

Copyright © 2014 Fusion-io, Inc. All rights reserved.16

Snapshots in a Flash with ioSnapTM (patent pending technology)

Conclusions
“Make everything as simple as possible, but not simpler.”

– Albert Einstein

• Flash is revolutionizing the storage industry
• Rethink data services to leverage flash’s capability & performance

• ioSnap: first flash-aware snapshotting system
• Leverages RoW capability in FTLs to implement snapshots

• Proposes usage of epochs to preserve log-time ordering

• Low-overhead instantaneous snapshots (performance & storage)

• Embraces rate-limiting to minimize impact to foreground traffic
• Activations are slow & can be 10s of sec for a TB size snapshot

Copyright © 2014 Fusion-io, Inc. All rights reserved.17

Copyright © 2014 Fusion-io, Inc. All rights reserved.18

Thank you

