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Snapshots Overview

• Point-in-time representation of the state of a storage device 
• Snapshots are primarily used for backup, disaster recovery

• Creates/deletes are common operations
• Accesses/activates are rare operations

• Use Copy-on-Write (CoW) or Redirect-on-Write (RoW)
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Why Rethink Snapshots for Flash?
• Flash is revolutionizing storage systems 

• Accelerating data centers, enterprise apps, desktops

• Natural fit for supporting snapshots
• Redirect-on-Write: never overwrite existing data
• Log-structuring: data ordered on their creation time (almost)

• Rate of data-change is higher for Flash devices
• e.g., multi-threaded 8KB IOs, TB capacity device 

• Flash: 30K IOPS and device fills in ~1 hour
• HDD : 500  IOPS and device fills in ~3 days
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Snapshots in Flash Challenges

• Users are sensitive to performance variability
• Need predictable performance all the time 

• NAND flash has low endurance & inefficient in-place writes
• In-place updates of reference counts not possible

• Cannot waste storage space for storing snapshot metadata
• $/GB is high and need to keep costs low
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ioSnapTM Overview

• First flash-aware snapshotting system
• Leverages RoW in FTL to support snapshot operations 
• Supports large number of writable snapshots (216)
• Proposes usage of epochs in FTL to maintain log-time ordering
• Embraces rate-limiting to minimize performance implications

• Performance Results (prototype built into Fusion-io VSL driver)

• Instantaneous snapshot creation/deletion (~50usec, 4k metadata)

• Matches vanilla read/write performance numbers 
• Provides predictable performance for foreground IOs
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Outline

• Introduction

• ioSnapTM Design

• Evaluation

• Conclusions 
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Design Goals

Goals
• Negligible impact on foreground performance
• Predictable foreground performance
• Minimal space overheads for snapshot metadata
• Integrate with existing FTLs
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Segment 
Boundary

Creating / Deleting Snapshots in Flash

Key concept:

Infinite size logS1 S2 S3 SN

Snapshot

Deletion: write a snapshot deletion note
Creation: write a snapshot create note in the log
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Leverage time ordering of data in a log to create snapshots

Segment 1 Segment 2 Segment N

Snapshot creation/deletion is fast & negligible (fixed) metadata
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Well What About Segment Cleaner?
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Epoch: notion of period of time
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Epochs help preserve log-time ordering 
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Managing Liveness of blocks
• Issue: snapshots indirectly increase the reference count

• Validity bitmap with a single bit doesn’t work

• Possible solutions: 
• Maintain more bits/block (216 snapshot implies 16x increase in bitmaps)
• Selectively maintain per sub-segment bitmap for snapshots

• Only create a bitmap if a snapshot has (or modified) data in it  

Insight: determine if a given block has at least one
reference to it 
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Preserving Liveness Via CoW Validity Bitmaps
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Snapshot-Aware Segment Cleaner
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Boundary Snapshot

Segment cleaner preserves log-time ordering 
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Design Summary

• Leverage RoW and implicit time ordering in the Log
• Epochs preserve log-time ordering even with a cleaner
• Sub-segment-level bitmaps to track validity of blocks
• Snapshot-aware cleaner preserves log-time and block validity

• Snapshot management
• Background snapshot activation
• Rate-limiting to provide predictable foreground performance
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Outline

• Introduction

• ioSnapTM Design

• Evaluation

• Conclusions 
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Evaluation
• How does it compare with existing snapshotting systems?

• What’s the impact on user IOs in the absence of snapshots?

• Snapshot creation/deletion time? Implications on user IO?

• Implications of a snapshot-aware segment cleaner?

• How long does it talk to activate a snapshot?
• Implications on the crash recovery mechanism?

Setup: quad core Intel i7 processor, 1.2TB NAND flash, 12GB RAM, Linux 
2.6.35, older generation of Fusion-io VSL driver, 4K Block sizes 
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Comparison with BTRFS (1)
Impact on foreground latency upon snapshot creation

Around 8 GB of sequential writes followed by a random workload interspersed by a 
snapshot every 5 sec

Snapshots in ioSnap does not impact foreground latencySnapshots in ioSnap does not impact foreground latency
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Conclusions
“Make everything as simple as possible, but not simpler.”

– Albert Einstein

• Flash is revolutionizing the storage industry
• Rethink data services to leverage flash’s capability & performance 

• ioSnap: first flash-aware snapshotting system
• Leverages RoW capability in FTLs to implement snapshots

• Proposes usage of epochs to preserve log-time ordering

• Low-overhead instantaneous snapshots (performance & storage)

• Embraces rate-limiting to minimize impact to foreground traffic 
• Activations are slow & can be 10s of sec for a TB size snapshot
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