
Split-level I/O Scheduling
Suli Yang, Tyler Harter, Anand Krishnamurphy,	

Salini Kowsalya, Samer Al-Kiswany,	

Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

What is Scheduling?

Scheduling Involves:	

Specifying	

Accounting	

Reordering

What is (disk) Scheduling?

Scheduling Involves:	

Specifying	

Accounting	

Reordering

disk

Client 1 Client 2

Scheduling Involves:	

Specifying	

Accounting	

Reordering

disk

Client 1	

(75%)

Client 2	

(25%)

What is (disk) Scheduling?

Scheduling Involves:	

Specifying	

Accounting	

Reordering

disk

Client 1	

(75%)

Client 2	

(25%)

50% 50%

What is (disk) Scheduling?

Scheduling Involves:	

Specifying	

Accounting	

Reordering

disk

Client 1	

(75%)

Clint 2	

(25%)

75% 25%

What is (disk) Scheduling?

Queues

Problem Preview: FS

disk

Client 1	

(75%)

Client 2	

(25%)

File System

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling	

Conclusions

CFQ Eval (Linux Default)

“Completely” Fair Queue	

Maintains per-task queues	

Time-share across queues	

Higher priority => bigger time slice	

Prios are 0-7, with 0 highest (fastest)

Eval Workloads

8 tasks, priorities from 0-7	

Each task accesses its own file	

Sequential I/O only	

4KB requests

Does CFQ respect priorities 
for basic reads and writes?

0 1 2 3 4 5 6 7
0

10

20

30

40

50
(a) Read

Priority

M
Bs
/s
ec
on
d

Conclusion: CFQ respects read priorities -- good!

0 1 2 3 4 5 6 7
0

10

20

30

40

50
(a) Read

Priority

M
Bs
/s
ec
on
d

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35
(b) Write

Priority

M
Bs
/s
ec
on
d

Conclusion: write priorities not respected

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35
(b) Write

Priority

M
Bs
/s
ec
on
d

Why? >99% of I/O blamed on writeback task

0 1 2 3 4 5 6 7
0

5

10

15

20

25

30

35
(b) Write

Priority

M
Bs
/s
ec
on
d

What if we force each process
does its own writing?	

 (with O_DIRECT)

0 1 2 3 4 5 6 7
0.0

0.3

0.6

0.9

1.2

1.5
(c) Direct

Priority

M
Bs
/s
ec
on
d

0 1 2 3 4 5 6 7
0.0

0.3

0.6

0.9

1.2

1.5
(c) Direct

Priority

M
Bs
/s
ec
on
d

Conclusion: yes, but performance suffers

Does O_DIRECT trick work  
if metadata is flushed often?

0 1 2 3 4 5 6 7
0

10

20

30

40
(d) Direct/Fsync

Priority

KB
s/
se
co
nd

0 1 2 3 4 5 6 7
0

10

20

30

40
(d) Direct/Fsync

Priority

KB
s/
se
co
nd

Conclusion: no, priorities not respected

0 1 2 3 4 5 6 7
0

10

20

30

40
(d) Direct/Fsync

Priority

KB
s/
se
co
nd

Why? Fsync enforces global ordering which CFQ
cannot help with.

CFQ Eval Conclusion

Rename CFQ => SFQ (sometimes fair queueing)	

Is CFQ just a bad implementation?	

No, the whole scheduling framework and
architecture is bad	

FS/block interface gives schedulers little/no
knowledge of or control over FS features important
to scheduling

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling	

Conclusions

What makes CFQ’s life
hard?

• …Writes!	

• Write delegation prevents correct
accounting. 	

• Ordering requirement prevents priority-
based re-ordering

An ext4 Case Study

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

Problematic FS Features

Journal

Conflict of interest!	

Journal has ordering requirement for
consistency	

Scheduler wants to re-order for fairness	

!

Review (ordered mode)

Disk

Scheduler

FS/Journal

Review (ordered mode)

Disk

Scheduler

FS/Journal

high-prio write()

data trans-
action

Review (ordered mode)

Disk

Scheduler

FS/Journal

low-prio write()

data trans-
action

trans-
action

data

Review (ordered mode)

Disk

Scheduler

FS/Journal
data transaction data

batching combines two small transactions	

into one big one for performance

Review (ordered mode)

Disk

Scheduler

FS/Journal
transactiondata data

high-prio fsync() blocks til transaction on disk

Review (ordered mode)

Disk

Scheduler

FS/Journal
transaction

data data

consistency imposes requirement that transaction
hits disk after all data blocks

It doesn’t matter which block the scheduler flushes first.	

Scheduler can’t unbatch the transaction to help the fsync().

Review (ordered mode)

Disk

Scheduler

FS/Journal

transactiondata data

high-prio fsync() blocks til transaction on disk

Priority inversion! High-prio fsync depends on low-prio block

Review (ordered mode)

Disk

Scheduler

FS/Journal

transactiondata data

file system journal writes transaction on behalf of
the actual writers

Also, who to blame for the transaction write?

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

bad bad

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

bad bad

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

bad

bad

bad

bad

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

bad

bad

bad

bad

bad

neutral

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

bad

bad

bad

bad

bad

bad

neutral

good

Problematic FS Features

Just ext4?

• Almost all file systems use ordering
requirements to ensure crash consistency
(Soft updates: FFS, Journaling: CFS, Copy-
on-Write: ZFS)	

• Write delegation everywhere (Write-back
built in kernel, delaying work for
performance)

Just ext4?

• Write delegation and ordering
requirements are universal file system
properties	

• Makes block level write scheduling
inherently hard (if not impossible)

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling	

Conclusions

System Call Scheduling

Idea: hold back read and write system calls instead of
holding back block I/O	

Craciunas etal, SIGOPS OSR ’08	

Advantages:  
 Simple  
 Does scheduling above the messy FS level	

Traditional Scheduling

FS
Read() Write()

Block

Queues

Client ClientClient

disk

Read WriteReadReadRead
WriteWriteWrite

System Call Scheduling

FS

Read() Write()

Block
Read Write

Queues

Client ClientClient

Read()Read()Read()
Write()Write()Write()

disk

System Call Scheduling

FS

Read() Write()

Block
Read Write

Queues

Client ClientClient

Read()Read()Read()
Write()Write()Write()

Cache

Problem 1: what if we read/write can be absorbed by
cache?

System Call Scheduling

FS

Read() Write()

Block
Read Write

Queues

Client ClientClient

Read()Read()Read()
Write()Write()Write()

Cache

Problem 2: writes now block  
(previously asynchronous)

System Call Scheduling

FS

Read() Write()

Block
Read Write

Queues

Client ClientClient

Read()Read()Read()
Write()Write()Write()

Cache

Problem 3: not all FS I/O has the same cost  
(e.g., random I/O), or that involving metadata

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling	

Conclusions

New Cross Layer
Scheduler Framework
• New notification to scheduler: file system events

(write/fsync called/completed, write back
happened)	

• New action available: queue system calls in
addition to block level requests, flush file cache	

• New info of accounting: io-tag for client
identification

New Cross Layer
Scheduler Framework
• File system view and block level view: both

high level ordering and low level
optimization	

• Ability to control important file system
behavior and memory state. 	

• io-tag enables correct and accurate (low
level) accounting.

Things We Enable

• Correct priority-based I/O scheduling. 	

• I/O isolation based on cache partitioning. 	

• Real end-to-end latency control.	

• and others…

Accounting

Split Level Actual Fair
Queuing

FS

Block
Write

Queues

Client ClientClient

Read() fsync() Write()fsync() Write()

Queues
ReadRead

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling (Preliminary Results)	

Conclusions

Asynchronous Writes
now work!

Write+Fsync works
too!

Outline

Intro: disk scheduling basics	

CFQ isn’t fair!	

FS Scheduling Challenges (ext4 case study)	

Naive approach (not our idea)	

Split-Level Scheduling (Implementation)	

Conclusions

Conclusions

Life’s not fair, but file systems should be	

Reads are easy, writes are hard	

Simple layer stacking makes some problems
impossible to solve - have to work cross-layer

New Cross Layer
Scheduler Framework
• New notification to scheduler: add_block_req,

add_write_call, add_fsync_call, req_complete,
write_complete, fsync_complete
writeback_happened, disk_need_work	

• New action available:
issue_block_req, issue_write_call, issue_fsync_call,
flush_file_cache	

• New info of accounting: io-tag for client
identification

