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Client | Client 2
(75%) (25%)




Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling

Conclusions



CFQ Eval (Linux Default)

“Completely” Fair Queue
Maintains per-task queues
Time-share across queues
Higher priority => bigger time slice

Prios are 0-7, with 0 highest (fastest)



Eval Workloads

8 tasks, priorities from 0-7
Each task accesses its own file
Sequential I/O only

4KB requests



Does CFQ respect priorities
for basic reads and writes?
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Conclusion: CFQ respects read priorities -- good!
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(b) Write
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Conclusion: write priorities not respected



(b) Write
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Why? >99% of I/O blamed on writeback task



What if we force each process
does its own writing!

(with O DIRECT)



(c) Direct
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(c) Direct

—h
Ol
|

—
N
|

O
O
|

O
o)
|

O
W
|

0.0 -

I---_
O 1 2 3 4 5 o6 7
Priority

Conclusion: yes, but performance suffers



Does O DIRECT trick work
if metadata is flushed often?
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(d) Direct/Fsync
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Conclusion: no, priorities not respected



(d) Direct/Fsync
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Why! Fsync enforces global orderlng which CFQ
cannot help with.



CFQ Eval Conclusion

Rename CFQ => SFQ (sometimes fair queueing)
Is CFQ just a bad implementation!?

No, the whole scheduling framework and
architecture is bad

FS/block interface gives schedulers little/no
or FS features important

to scheduling
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What makes CFQ’s life
hard?

® ... Writes!

® \/Vrite delegation prevents correct
accounting.

® (Ordering requirement prevents priority-
based re-ordering



An ext4 Case Study
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Journal

Conflict of interest!

Journal has ordering requirement for
consistency

Scheduler wants to re-order for fairness
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Review (ordered mode)

batching combines two small transactions
into one big one for performance
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Review (ordered mode)
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Review (ordered mode)

consistency imposes requirement that transaction
hits disk after all data blocks

\
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m Scheduler

Disk

It doesn’t matter which block the scheduler flushes first.
Scheduler can’t unbatch the transaction to help the fsync().



Review (ordered mode)

high-prio £sync () blocks til transaction on disk
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Priority inversion! High-prio fsync depends on low-prio block




Review (ordered mode)

file system journal writes transaction on behalf of

the actual writers

~

m transaction

FS/Journal

Scheduler

Disk

Also, who to blame for the transaction write!?
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Problematic FS Features

Accounting  Ordering

Journaling

Shared Metadata

Write Buffering neutral

good




Just ext4!

® Almost all file systems use ordering
requirements to ensure crash consistency
(Soft updates: FFS, Journaling: CFS, Copy-
on-Write: ZFS)

® Write delegation everywhere (Write-back
built in kernel, delaying work for
performance)



Just ext4!

® Write delegation and ordering
requirements are universal file system
properties

® Makes block level write scheduling
inherently hard (if not impossible)
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System Call Scheduling

|dea: hold back read and write system calls instead of
holding back block I/O

Craciunas etal, SIGOPS OSR 08

Advantages:
Simple
Does scheduling above the messy FS level



Traditional Scheduling
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System Call Scheduling
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System Call Scheduling
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System Call Scheduling
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System Call Scheduling
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Problem 3: n-e same cost

(e.g., random |/Q), or that involving metadata
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New Cross Layer
Scheduler Framework

® New notification to scheduler: file system events
(write/fsync called/completed, write back
happened)

® New action available: queue system calls in
addition to block level requests, flush file cache

® New info of accounting: io-tag for client
identification



New Cross Layer
Scheduler Framework

® File system view and block level view: both
high level ordering and low level
optimization

® Ability to control important file system
behavior and memory state.

® jo-tag enables correct and accurate (low
level) accounting.



Things We Enable

Correct priority-based I/O scheduling.
/O isolation based on cache partitioning.
Real end-to-end latency control.

and others...



Split Level Actual Fair
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VVritet+Fsync works
too!

direct_write_fsync
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Conclusions

Life’s not fair, but file systems should be
Reads are easy, writes are hard

Simple layer stacking makes some problems
impossible to solve - have to work cross-layer



New Cross Layer
Scheduler Framework

® New notification to scheduler:add block req,
add_write_call, add_fsync_call, req_complete,
write_complete, fsync_complete
writeback_happened, disk_need work

® New action available:
issue_block_req, issue_write_call, issue_fsync_call,
flush_file_cache

® New info of accounting: io-tag for client
identification



