Split-level /O Scheduling

Suli Yang, Tyler Harter, Anand Krishnamurphy,
Salini Kowsalya, Samer Al-Kiswany,
Andrea C.Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

What is Scheduling?

Scheduling Involves:
Specifying
Accounting

Reordering

What is (disk) Scheduling?

Client | Client 2

Scheduling Involves:
Specifying
Accounting

Reordering

What is (disk) Scheduling?

Client | Client 2
(75%) (25%)
Scheduling Involves:
Specifying
Accounting

Reordering

What is (disk) Scheduling?

Client | Client 2
(75%) (25%)
Scheduling Involves:
Specifying
Accounting

Reordering

What is (disk) Scheduling?

Client | Clint 2
(75%) (25%)
Scheduling Involves:
Specifying
Accounting

Reordering

Problem Preview: FS

Client | Client 2
(75%) (25%)

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling

Conclusions

CFQ Eval (Linux Default)

“Completely” Fair Queue
Maintains per-task queues
Time-share across queues
Higher priority => bigger time slice

Prios are 0-7, with 0 highest (fastest)

Eval Workloads

8 tasks, priorities from 0-7
Each task accesses its own file
Sequential I/O only

4KB requests

Does CFQ respect priorities
for basic reads and writes?

(a) Read

0

50 -

- -
™ QV

pu029as/sgN

40
10 -
O_

2 3 4 5 6 7

1

Priority

(a) Read

50 -
40 -

O

S 30-

O

&

M

D 20-
10 -
0 e e

Priority
Conclusion: CFQ respects read priorities -- good!

MBs/second

(b) Write

- 1 r 1T T1°r 1T 1T 1T 1T —

O 1 2 3 4 5 6 7
Priority

(b) Write

MBs/second

O___I___I___I___I___I___I___I___I__
o 1 2 3 4 5 6 7
Priority

Conclusion: write priorities not respected

(b) Write

MBs/second

O 1 2 3 4 5 6 7
Priority

Why? >99% of I/O blamed on writeback task

What if we force each process
does its own writing!

(with O DIRECT)

(c) Direct

1.5 -

1.2 -
9

_
©
o

0.3-
0.0 -

o
pu029as/sgN

2 3 4 5 6 7

1

0

Priority

MBs/second

(c) Direct

—h
Ol
|

—
N
|

O
O
|

O
o)
|

O
W
|

0.0 -

I---_
O 1 2 3 4 5 o6 7
Priority

Conclusion: yes, but performance suffers

Does O DIRECT trick work
if metadata is flushed often?

KBs/second

40 -

30 -

20 -

10 -

(d) Direct/Fsync

- 1 I 1 T T T T T

O 1 2 3 4 5 6 7
Priority

KBs/second

(d) Direct/Fsync

40 -

30 -

20 -

10 -

O___I___I___I___I___I___I___I___I__
o 1 2 3 4 5 6 7
Priority

Conclusion: no, priorities not respected

(d) Direct/Fsync

40 -

30 -

20 -

KBs/second

10 -

O___I___I___I___I___I___I___I___I__
O 1 2 3 4 5 6 7

Priority

Why! Fsync enforces global orderlng which CFQ
cannot help with.

CFQ Eval Conclusion

Rename CFQ => SFQ (sometimes fair queueing)
Is CFQ just a bad implementation!?

No, the whole scheduling framework and
architecture is bad

FS/block interface gives schedulers little/no
or FS features important

to scheduling

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling

Conclusions

What makes CFQ’s life
hard?

® ... Writes!

® \/Vrite delegation prevents correct
accounting.

® (Ordering requirement prevents priority-
based re-ordering

An ext4 Case Study

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering

Delayed Allocation

Problematic FS Features

Accounting Ordering

Shared Metadata

Write Buffering

Delayed Allocation

Journal

Conflict of interest!

Journal has ordering requirement for
consistency

Scheduler wants to re-order for fairness

Review (ordered mode)

FS/Journal

Scheduler

Disk

Review (ordered mode)

high-prio write()

FS/Journal
action

Scheduler

Disk

Review (ordered mode)

low-prio write ()

l

. FS/Journal
action

Scheduler

Disk

Review (ordered mode)

batching combines two small transactions
into one big one for performance

FS/Journal

Scheduler

Disk

Review (ordered mode)

high-prio £sync () blocks til transaction on disk

\

; FS/Journal
o

Scheduler

Disk

Review (ordered mode)

consistency imposes requirement that transaction
hits disk after all data blocks

\

; FS/Journal
m Scheduler

Disk

It doesn’t matter which block the scheduler flushes first.
Scheduler can’t unbatch the transaction to help the fsync().

Review (ordered mode)

high-prio £sync () blocks til transaction on disk

\

) FS/Journal

Scheduler

Disk
-

Priority inversion! High-prio fsync depends on low-prio block

Review (ordered mode)

file system journal writes transaction on behalf of

the actual writers

~

m transaction

FS/Journal

Scheduler

Disk

Also, who to blame for the transaction write!?

Problematic FS Features

Accounting Ordering

Shared Metadata

Write Buffering

Delayed Allocation

Problematic FS Features

Accounting Ordering

Journaling

Write Buffering

Delayed Allocation

Problematic FS Features

Accounting Ordering

Journaling

Write Buffering

Delayed Allocation

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

nheutral

Delayed Allocation

Problematic FS Features

Accounting Ordering

Journaling

Shared Metadata

Write Buffering neutral

good

Just ext4!

® Almost all file systems use ordering
requirements to ensure crash consistency
(Soft updates: FFS, Journaling: CFS, Copy-
on-Write: ZFS)

® Write delegation everywhere (Write-back
built in kernel, delaying work for
performance)

Just ext4!

® Write delegation and ordering
requirements are universal file system
properties

® Makes block level write scheduling
inherently hard (if not impossible)

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling

Conclusions

System Call Scheduling

|dea: hold back read and write system calls instead of
holding back block I/O

Craciunas etal, SIGOPS OSR 08

Advantages:
Simple
Does scheduling above the messy FS level

Traditional Scheduling

Client Client Client

N 7

Read() Write()

| | FS

l Queuesl
u[Read "“L Wrtte

‘ | | Block

System Call Scheduling

Client CIiIent Client

System Call Scheduling

Client Client Client

u—L Read() J]I-L Write()I

FS

| i. Block

Problem |:what if , be absorbed by
cache!

System Call Scheduling

Client Client Client

u—L Read() J]I-L Write()I

FS

Block

|

Probl-lock

(previously asynchronous)

System Call Scheduling

Client Clilent Client

-

[

Read() A-’I-L Write() |

W*ite

!

l

FS

Block

Problem 3: n-e same cost

(e.g., random |/Q), or that involving metadata

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling

Conclusions

New Cross Layer
Scheduler Framework

® New notification to scheduler: file system events
(write/fsync called/completed, write back
happened)

® New action available: queue system calls in
addition to block level requests, flush file cache

® New info of accounting: io-tag for client
identification

New Cross Layer
Scheduler Framework

® File system view and block level view: both
high level ordering and low level
optimization

® Ability to control important file system
behavior and memory state.

® jo-tag enables correct and accurate (low
level) accounting.

Things We Enable

Correct priority-based I/O scheduling.
/O isolation based on cache partitioning.
Real end-to-end latency control.

and others...

Split Level Actual Fair
Queuing

Cllent Clilent Client

ps——

Read()\ [fsyncO [Write()

Eueues |
|

_ Read \'i\/rite

| Block

FS

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling (Preliminary Results)

Conclusions

synchronous VVrites
now work!

async writes

QD
=
e
9
>
w
w
L
=
L
-
=
@
|

Horizontal axis title

VVritet+Fsync works
too!

direct_write_fsync

QD
=
S
2
>
o
[
L
=
D
S
@
Ny

,r - '+
.D" l, o A' 1' l-",

Qutline

Intro: disk scheduling basics

CFQ isn’t fair!

FS Scheduling Challenges (ext4 case study)
Naive approach (not our idea)

Split-Level Scheduling (Implementation)

Conclusions

Conclusions

Life’s not fair, but file systems should be
Reads are easy, writes are hard

Simple layer stacking makes some problems
impossible to solve - have to work cross-layer

New Cross Layer
Scheduler Framework

® New notification to scheduler:add block req,
add_write_call, add_fsync_call, req_complete,
write_complete, fsync_complete
writeback_happened, disk_need work

® New action available:
issue_block_req, issue_write_call, issue_fsync_call,
flush_file_cache

® New info of accounting: io-tag for client
identification

